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Humans are able to estimate the reflective properties of the surface (albedo) of an object despite the large
variability in the reflected light due to shading, illumination and specular reflection. Here we first used a
physically based rendering simulation to study how different statistics (i.e. percentiles) based on the
luminance distributions of matte and glossy objects predict the overall surface albedo. We found that
the brightest parts of matte surfaces are good predictors of the surface albedo. As expected, the brightest
parts led to poor performance in glossy surfaces. We then asked human observers to sort four (2 matte
and 2 glossy) objects in a virtual scene in terms of their albedo. The brightest parts of matte surfaces
highly correlated with human judgments, whereas in glossy surfaces, the highest correlation was
achieved by percentiles within the darker half of the objects’ luminance distributions. Furthermore,
glossy surfaces tend to appear darker than matte ones, and observers are less precise in judging their
lightness. We then manipulated different bands of the virtual objects’ luminance distributions separately
for glossy and matte surfaces. Modulating the brightest parts of the luminance distributions of the glossy
surfaces had a limited impact on lightness perception, whereas it clearly influenced the perceived light-
ness of the matte objects. Our results demonstrate that human observers effectively ignore specular
reflections while evaluating the lightness of glossy objects, which results in a bias to perceive glossy
objects as darker.

� 2016 Published by Elsevier Ltd.
1. Introduction

The light reaching the eye from a surface depends on the albedo
of the surface, the illumination, the geometry of the surface, and
the transmitting medium between the reflecting surface and the
eye. In nature, geometries or illuminants typically cause luminance
variations in the light reflected from the surface (i.e. shading), even
when the surface is made of a single material. Apparently, human
observers are able to perceive both lightness, defined as the appar-
ent reflectance of an object’s surface (not affected by shading), and
brightness, defined as the apparent luminance, at the same time
(Arend & Spehar, 1993). We can perceive brightness because other-
wise we would not be able to perceive shading at all. Lightness
constancy is the ability of our visual system to recover the albedo
(diffuse reflectivity) of an object’s surface despite changes in the
environmental conditions. This task is far from trivial because sur-
faces with different albedos (e.g. one dark and one light surface)
can produce luminance distributions that overlap to a large extent,
due to the interaction between the surface geometry and the illu-
minant (shading). It is therefore interesting to study how the visual
system discounts shading. In these terms, one potential contribu-
tion to lightness constancy is the ability to tell shading and albedo
apart.

Several investigators proposed that in order to recover surface
albedo, the visual system explicitly estimates and discounts the
contributions of illumination and geometry to the observed lumi-
nances (e.g. Marr, 1982; Pizlo, 2001; Poggio & Koch, 1985;
Poggio, Torre, & Koch, 1985). This approach is referred to as inverse
optics. An alternative theoretical approach, proposes that the visual
system uses simple image statistics to bypass this problem and
estimate surface albedo directly (see for review: Fleming, 2014;
Thompson, Fleming, Creem-Regehr, & Stefanucci, 2011). This image
statistics approach is motivated by the sheer impossible difficulty
of estimating the individual factors when naturalistically complex
geometries are concerned. In fact, the majority of studies about
lightness perception are based on simplified stimuli: flat matte
surfaces placed on a single plane under diffuse illumination (for
an overview, see Maloney & Brainard, 2010). Under these simpli-
fied conditions, edges were proposed as the crucial information
to estimate the relative albedo of coplanar surfaces (Cornsweet,
1970; Land & McCann, 1971). Nishida and Shinya (1998) showed
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that more complex geometries can lead observers to produce large
errors in matching the diffuse and specular reflectance compo-
nents between different shapes (Nishida & Shinya, 1998). The pat-
tern of errors in their study suggested that the reflectance matches
were based on the similarity of the luminance histograms between
the images. However, additional complexity can also provide addi-
tional cues to lightness perception. For instance, in simple condi-
tions, when a matte planar surface is viewed in isolation, albedo
and illumination are impossible to distinguish and isolated flat sur-
faces are perceived as white (Gelb, 1929). Nonetheless, observers
can – to some extent – judge the lightness of relatively more com-
plex surfaces, such as stucco, even if they are presented in isolation
(Sharan, Li, Motoyoshi, Nishida, & Adelson, 2008). In these experi-
ments, Sharan and colleagues tested lightness perception using
photographs of real planar surfaces of matte and glossy materials,
uniform in albedo. The additional complexity given by the meso-
structure and the specular reflection enabled the observers to
judge the albedo, despite the fact that the surfaces were presented
in isolation. The authors observed that it is possible to predict
lightness judgments based on the luminance histogram. Namely,
they found that measured albedo and lightness (perceived albedo)
correlate negatively with skewness, standard deviation and the
90th percentile of the surfaces’ luminance distribution. In a com-
panion paper, Motoyoshi and colleagues (Motoyoshi, Nishida,
Sharan, & Adelson, 2007) showed that skewness correlates nega-
tively with albedo and perceived lightness, and positively with
the presence of specular reflections and perceived gloss.

We previously found that the highest percentiles of the lumi-
nance distributions of matte objects are particularly diagnostic
for their albedo, and human observers tend to base their lightness
judgments on them (Toscani, Valsecchi, & Gegenfurtner, 2013;
Toscani, Valsecchi, & Gegenfurtner, 2015). It is not yet clear
whether the visual system applies the same strategy when exposed
to glossy surfaces. Intuitively, the brightest parts of the luminance
distributions of glossy surfaces should be contaminated to a large
extent by specular reflection. Consequently, specular highlights
could be seen as a source of noise on the diffuse reflection, and a
different heuristic could be used. In the present study we investi-
gate what aspects of the luminance distributions are related to sur-
face albedo and to human lightness judgments (separately for
glossy and matte surfaces). More generally, we want to study
how the presence of specular reflection impacts lightness percep-
tion, in terms of precision and appearance.

If lightness perception is indeed based on the brightest parts of
the luminance distributions of both matte and glossy surfaces, the
latter ones should appear lighter. If the specular highlights are dis-
counted and the lightness judgments are based on the remaining
parts of the distribution, glossy surfaces should appear darker,
unless some active compensation takes place. However, comparing
the lightness of glossy and matte surfaces is not a trivial task. Even
equating the diffuse reflectance across gloss levels is not a trivial
problem from a physical point of view. Diffuse reflectance can be
defined as (1) the diffuse flux in proportion to the incident illumina-
tion, or (2) in proportion to a component of incident illumination
that discounts the illumination lost through specular reflection. This
distinction is crucial because one difference between diffuse and
specular reflection is that in the former case, the light is reflected
in all directions, whereas in the latter the direction depends on the
surface normal and on the illuminant direction (Hero’s law, see
Heath, 1921). For this reason, specular highlights appear only
reflected from the points of a glossy surface that project toward
the point of view of the observer, and when the observer moves,
the highlights appear on a different part of the surface. This implies
that the light is specularly reflected by the whole surface, but the
specular highlights of a certain region of the surface are visible only
from the appropriate point of view. If we commit to the second def-
inition of diffuse reflectance, given that part of the incoming light is
specularly reflected from every point of the surface, glossy surfaces
present areas where the radiance reflected is actually lower (low-
lights, see Kim, Marlow, & Anderson, 2012), as compared to a matte
surface with the same diffuse reflection component, and brighter
areas where specular and diffuse reflection add when reaching the
retina (highlights).

With respect to the precision of lightness judgments, we expect
observers to be worse in judging glossy surfaces. This is because
specular highlights tend to appear in the proximity of the lumi-
nance maxima in diffuse shading (Fleming, Torralba, & Adelson,
2004; Koenderink & van Doorn, 1980). Since those luminance max-
ima are the most informative about surface albedo, having them
contaminated by specular highlights should reduce the precision
of lightness judgments.

Here, in our first experiment we used a physically based render-
ing software (radiance – developed by Ward (1994)) to simulate a
set of tridimensional models of objects, both with glossy or matte
reflectance, and under different naturalistic illuminants. We then
used a classification approach to assess to what extent each per-
centile of the surface luminance distribution predicts the surface
albedo (Wiebel, Toscani, & Gegenfurtner, 2015). Similar to our pre-
vious study about matte surfaces (Toscani et al., 2013, 2015), we
focused our analysis on the percentile statistics because they are
directly available to the observer as luminance of a given section
of the object surface, whereas for instance the mean luminance
might not be represented in the image at all in the case of object
images with very bimodal luminance histograms. We repeated this
analysis on a smaller set of rendered scenes where we used a
reduced set of ‘‘blobby” shapes (described later in detail). With this
reduced set of shapes, we tested human participants in a lightness
ranking task, aiming to compare their performance with the simu-
lation results. We found the ranking task to be more natural than a
standard lightness matching, and thus preferable given that light-
ness and color judgments are particularly sensitive to task instruc-
tions (Arend & Spehar, 1993; Schneider & von Campenhausen,
1998). We used the ranking results to study the importance of
the different percentiles of the surfaces luminance distributions
on lightness perception, and related this result with the one from
the reflection simulations, similar to what we previously did with
matte surfaces (Toscani et al., 2013, 2015). In a last experiment, we
manipulated different bands of the surface luminance histograms
to study the causal impact of the different percentiles on lightness
perception (separately for gloss and matte surfaces).

2. Simulation of natural objects

We aimed to find out which aspects of the luminance distribu-
tions of complex surfaces are good predictors for surface albedo,
separately for gloss and matte surfaces. The brightest parts of the
luminance distributions of glossy surfaces are likely to be contam-
inated by specular reflections, which would constitute a source of
noise in the estimation of the diffuse reflection. Conversely, the
brightest parts of matte surfaces are the most informative about
surface albedo (Toscani et al., 2013, 2015). Here we used a classifi-
cation algorithm to study how the different percentiles of the sur-
face luminance distributions perform in predicting the surface
albedo. For the sake of generality, in our simulations we used a
large collection of different tridimensional shapes rendered with
several orientations, from several viewpoints, and embedded in
several different light fields.

2.1. Methods

Renderings: We created our simulated scenes in an analogous
way as Wiebel et al. (2015). We rendered 83 different virtual
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objects each under 600 random conditions, using the software
RADIANCE (Ward, 1994) through the MATLAB-based RenderTool-
box3 (Heasly, Cottaris, Lichtman, Xiao, & Brainard, 2014). Only
one object was placed in the centre of every rendered scene. The
orientation of the object in the scene was randomized by randomly
rotating it on its axes. The point from which the scene was viewed
was randomly sampled from a sphere surrounding the object. We
rendered a total of 51,600 scenes, split into three groups of 17,200.
The first group of scenes contained matte objects rendered with a
Lambertian reflectance model. The second and the third groups
included glossy objects rendered with a Ward model (Ward,
1992), with increasing importance of the specular component.
The diffuse reflectance components were randomly chosen for
every virtual surface by sampling them from a beta distribution,
based on the results of Attewell and Baddeley (2007). These
authors showed that the distribution of natural surface reflec-
tances is best approximated by a beta distribution with parameters
a = 1.29 and b = 2.30. The specular surfaces were defined by the
two classic parameters of the Ward model; one representing the
magnitude of the specular component (i.e. specularity; set to 0.2
for the second group and 0.25 for the third group) and the other
the ‘‘spread’’ or blur of the specular reflection (i.e. roughness; set
to 0.1). To simulate naturalistic illuminants, we used the 9 Debe-
vec‘s light probes (Debevec, 2008). For every scene, one of these
light probes was randomly chosen as the virtual light field
(Fig. 1). The three-dimensional models were chosen from the fol-
lowing internet free repositories: the Turbosquid (http://www.
turbosquid.com) license free repository, the Stanford Computer
Graphics Laboratory (http://graphics.stanford.edu/data/3Dscan-
rep), and the AIM@SHAPE shape repository (http://visionair.ge.
Fig. 1. Examples of the rendered scenes. We selected models that exhibited a large ran
dimensional figures, like animals. We rendered 83 different virtual objects each under 9
rendered scenes.
imati.cnr.it/ontologies/shapes). We selected models that exhibited
a large range of diversity and complexity, from simple geometrical
shapes, such as a cube, to complex three-dimensional figures, like
animals.

Classification analysis: We rendered a perfectly dark version of
each surface in each position to generate a mask for segmenting
it from its background when calculating the luminance histograms.
From each luminance distribution, we extracted the percentile
statistics and used them to classify the images according to their
albedo (diffuse reflection coefficient used in the renderings). We
used a linear binary classifier approach, where we divided the
images into dark or light albedo by a median split (similarly to
Sharan et al., 2008). Classification was done for each individual
percentile. We trained the classifier on the whole set of images,
leaving out one image at a time. The excluded image was then
tested with the leave-one out linear classifier. All classification
analyses were done with the classification routines implemented
in the ‘‘classify’’ function of the statistics toolbox for MATLAB (ver-
sion R2015a, http://www.mathworks.com).

2.2. Results

Fig. 2 represents the classification performance, for matte sur-
faces (red curve) and the two groups of glossy surfaces with lower
and higher specularity (green and blue, respectively). Performance
increases monotonically as a function of the luminance percentile
rank in the matte surface case, similar to our previous results
(Toscani et al., 2013, 2015). On the other hand, for both of the
glossy groups, performance is relatively stable until approximately
the 80th percentile and only a few percent points lower than the
ge of complexity, from simple geometrical shapes, such as a cube, to complex three-
different illumination fields. The figure shows twenty-five random examples of the
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Fig. 2. Albedo classification results for each percentile of matte and glossy
surfaces. Performance is represented on the y-axis for each percentile (represented
on the x-axis). The solid lines represent the classification performance for matte
(black) and glossy (gray, specularity = 0.2; light gray, specularity = 0.25) surfaces.
For the matte surfaces, the performance is increasing monotonically as a function of
percentile rank, similar to our previous results (Toscani et al., 2013). For both levels
of specularity (0.2 and 0.25), for glossy surfaces, performance is relatively stable
and comparable to the one obtained with matte surfaces until approximately the
80th percentile, after which it decreases, reaching almost chance levels for the very
high percentiles.
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performance obtained with matte surfaces, but decreases to almost
chance level for the very high percentiles. This result is consistent
with the idea that specular reflections are contaminating the
brightest parts of a surface (Fleming et al., 2004; Koenderink &
van Doorn, 1980), impairing performance.
2.3. Discussion

It appears that while relying on the brightest parts of the sur-
face as an estimate of surface lightness is a viable strategy in the
case of matte objects (Toscani et al., 2013, 2015), the same strategy
would be suboptimal in the case of glossy objects. In order to
investigate whether humans are able to adapt their strategy to
the task, in a follow-on experiment we asked a group of partici-
pants to rank a set of surfaces in terms of lightness.
Fig. 3. Scene example. Four shapes were always present in the scene, two glossy
and two matte. The table was rendered totally matte with the diffuse reflection
parameter set to 90%, 100% and 90% respectively, for the three color channels R, G
and B, resulting in a light greenish gray. The marble texture on the table is realized
with the radiance function ‘‘dirt.cal”.
3. Simulation with artificial objects

We repeated the classification analysis on a new, more homoge-
neous set of shapes defined by two relatively simple parameters.
This allows for a better understanding and standardization of the
results of both simulation and psychophysical testing, also because
this family of shapes has been extensively used in vision research
before (e.g. Adams, Kerrigan, & Graf, 2016; Cholewiak & Fleming,
2013; Cholewiak, Kunsberg, Zucker, & Fleming, 2014; Cholewiak,
Vergne, Kunsberg, Zucker, & Fleming, 2015; Fleming et al., 2004;
Muryy, Fleming, & Welchman, 2016; Muryy, Welchman, Blake, &
Fleming, 2013; Norman, Todd, & Orban, 2004).
3.1. Methods

Renderings: We rendered our artificial shapes embedded in the
artificial scene that we planned to use for behavioral experiments.
In a single scene, two surfaces were always matte, and two glossy
(Fig. 3). We rendered the four surfaces with four different albedos
(40%, 44%, 48% and 52%). These values were chosen after a pilot
experiment in order to yield sensibly over chance (but not perfect)
performance. We rendered our scenes using the software RADI-
ANCE (Ward, 1994) through the MATLAB-based RenderToolbox3
(Lichtman, Xiao, & Brainard, 2007). The matte surfaces were again
rendered according to a Lambertian reflection model, whereas the
glossy surfaces were rendered according to theWard model (Ward,
1992). The specularity parameter was set to 0.2, and the roughness
parameter was set to 0.1. We used ‘‘The Uffizi Gallery” light probe
as the virtual illuminant for all the scenes. We are confident that
this choice did not restrict the generality of our results. Indeed
human observers can accurately match the diffuse component of
a sphere rendered under two different illuminations (Olkkonen &
Brainard, 2010) and when matching the diffuse component of
two different shapes under two different illuminations the errors
were rather small (Olkkonen & Brainard, 2011).

Shapes: A set of ‘‘blobby” objects were generated using sinu-
soidal perturbations of spheres (Cholewiak & Fleming, 2013;
Cholewiak et al., 2014, 2015). This sinusoidal perturbation was
characterized by its sine frequency and amplitude. We used a set
of 16 shapes, defined by four levels of amplitude and four levels
of frequency (Fig. 4). The generation algorithm starts with a sphere,
and recursively applies 5 sinusoidal perturbations to its vertexes.
The perturbation Amplitude ranged between ±[2,4,6,8]% of the
sphere radius. The Frequency of each perturbation was defined in
terms of the number of cycles of the wave within the sphere
(n = 1, 3, 5, 7), and is intuitively understood in terms of the number
of ‘‘corners” the object has (Muryy et al., 2013).

Scene composition: Four shapes were laying on a marble table in
every scene, two glossy and two matte (Fig. 3). Shape Frequency
and Amplitude, Specularity and position in the scene were bal-
anced across the full set of rendered scenes. This ensured a certain
generality to the simulation results, despite the simplicity of the
objects. In each scene, two shapes had one of the two higher ampli-
tude levels and two had one of the two lower amplitude levels.
Similarly, two shapes had one of the two higher spatial frequency
levels and one of the two lower spatial frequency levels. Frequency
and Amplitude are crossed within each scene, thus resulting in all
four combinations: 1) one shape with high amplitude and high



Fig. 4. Blobby Shapes. Sixteen ‘‘blobby” objects were generated using low
frequency sinusoidal perturbations of spheres. This sinusoidal perturbation was
characterized by its sine frequency and amplitude. We generated our shapes with
four Amplitude levels and four Frequency levels, in the illustration increasing from
top to bottom and from left to right respectively.
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frequency, 2) one with high amplitude and low frequency, 3) one
with low amplitude and high frequency and 4) one with low ampli-
tude and low frequency. By using different scenes we balanced the
combinations of Frequency and Amplitude with Specularity (glossy
& matte, M & G in Table 1), so that the four objects defined by the
combinations of Frequency were rendered with all the six disposi-
tions of two glossy and two matte objects. The difference between
high and low Frequency and high and low Amplitude was also
Table 1
Shape Parameters. Every scene contained 4 objects (Object 1–4, first row). For both Freque
L � (middle low) and L + (low). In order to balance high Frequency (H+ & H�) and low Fre
Specularity (G & M) we needed 24 scenes.

Object 1 Object 2

Scene Amp. Freq. Spec. Amp. Freq. Spec

1 H+ H+ M H+ L+ M
2 H+ H+ M H+ L+ G
3 H+ H+ G H+ L+ G
4 H+ H+ G H+ L+ M
5 H+ H+ M H+ L+ G
6 H+ H+ M H+ L+ M
7 H+ H� M H+ L� M
8 H+ H� M H+ L� G
9 H+ H� G H+ L� G
10 H+ H� G H+ L� M
11 H+ H� M H+ L� G
12 H+ H� M H+ L� M
13 H� H+ M H� L+ M
14 H� H+ M H� L+ G
15 H� H+ G H� L+ G
16 H� H+ G H� L+ M
17 H� H+ M H� L+ G
18 H� H+ M H� L+ M
19 H� H� M H� L� M
20 H� H� M H� L� G
21 H� H� G H� L� G
22 H� H� G H� L� M
23 H� H� M H� L� G
24 H� H� M H� L� M
balanced across trials, having all the four combinations: 1) middle
low (L�) Frequency vs middle high (H�) Frequency (second and
third columns in Fig. 4) and high (H+) Amplitude vs low (L+)
Amplitude (first and fourth rows in Fig. 4); 2) middle low (L�) Fre-
quency vs middle high (H�) Frequency (second and third columns
in Fig. 4) and middle high (H�) Amplitude vs middle low (L�)
Amplitude (second and third rows in Fig. 4); 3) low (L+) Frequency
vs high (H+) Frequency (first and fourth columns in Fig. 4) and high
(H+) Amplitude vs low (L+) Amplitude (first and fourth rows in
Fig. 4); 4) low (L+) Frequency vs high (H+) Frequency (first and
fourth columns in Fig. 4) and middle high (H�) Amplitude vs mid-
dle low (L�) Amplitude (second and third rows in Fig. 4). The com-
binations described above are listed in Table 1. The position in the
scene was also balanced, having all 24 dispositions, for every com-
bination of the other factors as described above. To balance all the
factors, we rendered 576 (24 � 24) scenes in total. The four reflec-
tances were randomly assigned for every scene, and the objects
were placed in the scene with a random rotation on their vertical
axis.

Classification analysis on the rendering parameters: We repeated
the classification analysis on this new set of shapes to ensure that
the general shapes we had chosen had similar properties to the
large database we analyzed in the first experiment, i.e. the bright-
est parts of matte surfaces are good predictors of the surface
albedo, whereas they perform relatively poorly when specular
reflection is involved.

Analysis: Similar to the initial simulation, for every object in
every rendered scene we extracted the luminance distribution of
the light coming from the virtual surface; for each of these distri-
butions, we computed the percentile statistics. In every scene, we
compared the two matte surfaces and the two glossy surfaces in
terms of the diffuse reflection parameter (rendered albedo). Thus
for every scene, we had a binary classification of albedo for both
the matte and glossy surfaces. We performed our analysis sepa-
rately for matte and glossy surfaces, using the percentile statistics
of each surface to predict its binary value in the binary comparison
within each scene (i.e., 0 = darker than the other matte or glossy
surface, 1 = lighter than the other surface).
ncy and Amplitude, we used 4 levels in our renderings: H + (high), H � (middle high),
quency (L+ & L�) with high Amplitude (H+ & H�) and low Amplitude (L+ & L�), with

Object 3 Object 4

. Amp. Freq. Spec. Amp. Freq. Spec.

L+ H+ G L+ L+ G
L+ H+ M L+ L+ G
L+ H+ M L+ L+ M
L+ H+ M L+ L+ G
L+ H+ G L+ L+ M
L+ H+ G L+ L+ M
L+ H� G L+ L� G
L+ H� M L+ L� G
L+ H� M L+ L� M
L+ H� M L+ L� G
L+ H� G L+ L� M
L+ H� G L+ L� M
L� H+ G L� L+ G
L� H+ M L� L+ G
L� H+ M L� L+ M
L� H+ M L� L+ G
L� H+ G L� L+ M
L� H+ G L� L+ M
L� H� G L� L� G
L� H� M L� L� G
L� H� M L� L� M
L� H� M L� L� G
L� H� G L� L� M
L� H� G L� L� M
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3.2. Results

Fig. 5 represents the performance of the albedo classification on
the matte and glossy surfaces, separately conducted on the scenes
rendered for the classification experiment. The goal of this analysis
is to reveal differences between matte and glossy surfaces, there-
fore we ignored the shape factors (i.e., Amplitude and Frequency)
thus increasing the number of instances that were used to train
the classifier. Results are qualitatively similar to the classification
results of the initial simulation: for the matte surfaces, perfor-
mance increases with the percentile; whereas for the glossy sur-
faces, after approximately the 80th percentile performance
decreases with the percentile. The only noticeable exception is that
the performance of the highest percentile (the luminance maxi-
mum) of the glossy surfaces increases almost to the level of the
matte surfaces.

3.3. Discussion

The reason for the discrepancy between the results of the two
experiments when it comes to the performance of the luminance
maximum is probably due to the fact that the ‘‘blobby” shapes
we used are all more or less spherical (they cover a large range
of surface normals), whereas some of the shapes we initially used
(like the cube or the pyramid) only have a small number of faces
(as opposite to a broad range of surface normals). Even some of
the shapes that are not fully delimited by flat faces, (like the plate,
the hand, and many statues and models) have an approximately
flat plane on some side. The diagnosticity of each percentile (i.e.
the 100th,) is determined both by the average difference in its
value between the two reflectance groups (i.e., high and low
albedo), as well as by the variability within each distribution.
When a surface presents a broad range of normals, it is likely that
the most intense illumination point in the light-field is mirrored
Fig. 5. Classification results for the albedo of the ‘‘general shapes”. Performance
is represented on the y-axis for each percentile (represented on x-axis). The solid
lines represent the classification performance for matte (black) and glossy (gray)
surfaces. Results are qualitatively similar to the classification results of the natural
objects: for the matte surfaces, performance increases with the percentile, whereas
for glossy surfaces, after approximately the 80th percentile performance decreases
with the percentile. Contrary to the previous results, for the glossy surfaces the
performance at the highest percentile (the maximum) increases almost to the level
of the performance for the matte surfaces.
towards the observer somewhere on the object surface. When a
surface only has a few number of faces, the chance that the specu-
lar highlight corresponds to the maximum intensity is much smal-
ler. For approximately spherical surfaces (which have a broad
range of surface normals), the maximum of the specular reflection
component is very stable, corresponding to the maximum of the
light-field. The variability added by the specular component to
the 100th percentile is minimal, leaving the diffuse component
as the main determinant of radiance. We tested this reasoning
explicitly with a series of simulations (described in the following
paragraph).

Performance highest percentile: We reasoned that the dramatic
increase in performance for the maximum (100th percentile) of
the glossy surfaces was due to a particularly low variability in
the reflection from the specular component for that percentile.
We tested this idea by first separately rendering the specular and
matte components for the glossy scenes analyzed above. Since
classification performance decreases with the distance between
the means of the distributions of the two albedo groups (i.e. high
and low albedo), and with the variability of these two distribu-
tions, we computed and represented standard deviation and mean
difference separately (Fig. 6A&B, respectively).

The general shapes used in the renderings for the ranking
experiment were divided into low or high albedo, according to
the comparison of the diffuse reflectance parameter between the
two matte or the two glossy shapes within each scene. Given the
two albedo groups, the group average luminances were computed.
The difference between these averages is represented in Fig. 6B, for
specular and diffuse components individually; and for the render-
ings where the two components are combined. The luminance of
the specular component does not depend on the albedo; therefore,
the average difference between the two groups is approximately
zero, irrespective of the percentile (black line), whereas for the dif-
fuse component this difference increases with the percentile as we
previously found (Toscani et al., 2013, 2015). When the two com-
ponents were rendered together, the profile of this difference as
function of the percentile rank resembles one of the diffuse compo-
nents alone. It follows that the distance between the averages of
the distributions of the groups that the linear classifier was trained
to discriminate cannot explain the increase in performance for the
highest percentile. In Fig. 6A, the standard deviation of the lumi-
nance is represented for each percentile, for the diffuse component
alone, for the specular component alone, and for the combined ren-
derings. In the specular component renderings, the highest per-
centile (maximum) exhibits a particularly low variability (black
line) as opposed to the variability in the diffuse component (that
increases until approximately the 60th percentile and holds at a
similar level until the last percentiles). The reduction in variability
in the percentiles extracted from the scenes where the two compo-
nents were rendered together is thus explained by the reduction in
variability in the specular component, which also explains the high
performance of the highest percentile in the linear classification.

Range of surface normals:We wanted to test whether this reduc-
tion in the variability of the luminance of the last percentile actu-
ally depends on the fact that when a surface has a broad range of
normals (as opposite to a small number of faces) the highest value
is likely to be the brightest illumination point in the light-field. We
therefore rendered 400 scenes with one of the ‘‘blobby” shapes
that we planned to use in the ranking experiment, and 400 with
a tetrahedron, the tridimensional shape with the minimum possi-
ble number of faces. The object models were placed in the centre of
the light-field and randomly rotated on their axis. We used a differ-
ent light field to test whether the results held independent of the
illuminant structure. For the tetrahedron, the highest percentile
was highly dependent on the position of the shape in the light-
field, and thus quite variable (Fig. 6D), whereas for the ‘‘blobby



Fig. 6. Variability and effect of albedo on percentile averages for ‘‘blobby” shapes. A) Standard deviation (y-axis) of luminance for every percentile (x-axis) for the specular
component (black line); the diffuse component (gray line); and the combined (dotted gray line) glossy shapes. B) Difference between luminances associated with the
percentiles in the high and low reflectance surfaces, for the specular and diffuse components (individually) and for the combined renderings. C) Standard deviation of
luminance for every percentile for the specular component (black line), the diffuse component (gray line), and the combined (dotted gray line) rendering, for one of the
general shapes (3rd row 2nd column of Fig. 4) under a light-field different from the one used to render the shapes for the ranking experiment (‘‘Funston Beach at Sunset”). D)
Same as in C), but with a tetrahedron. The decreased luminance variability in the highest percentile is completely due to the specular reflection in blobby shapes and is
completely absent in the tetrahedron.
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shape” it was extremely stable; supporting the idea that the peak
in performance in the classification of the glossy surfaces was
due to the roundness of the models. In our simulation the illumina-
tion fields were roughly characterized by direct lighting from the
top left of the observer in addition to a diffuse component (see
Fig. 3). Had the angle between the viewing and illumination direc-
tions been larger, say with light coming from almost behind the
object, the specular highlights would have been shifted to regions
with even darker diffuse shading. In this case it is possible that
even a very stable maximum would have been poorly informative
about lightness, and even surfaces with a broad range of surface
normals (as opposite to only a few number of faces) would have
yielded the same pattern of result expressed in Fig. 2. Overall, we
think it is quite unlikely that the sensitivity of the human visual
system is high enough to pick up on the spurious association
between the specular highlight intensity and albedo for glossy sur-
faces. In fact, the association between the maximum of the lumi-
nance distribution of glossy surfaces with the observers’
judgements is low when compared to the other percentiles (see
Fig. 9). This could happen either because observers ignored the
specular highlight or because the sensitivity of the visual system
is very poor for discriminating these few isolated bright spots
when being adapted to a much lower luminance level (Craik,
1938). Furthermore, the results of the experiment where we
directly manipulated the luminance bands strongly suggest that
observers do not use specular highlights in their lightness judge-
ments. Specifically, the increment or decrement of the last band,
coinciding with the specular highlight in the glossy images, had
no effect on lightness though these manipulations were clearly vis-
ible (see Fig. 11B).
4. Behavioral experiment

We presented our observers with our set of ‘‘blobby” shapes
and asked them to classify the objects in terms of lightness. We
used all the 576 shapes to ensure the same level of generality that
we achieved in the simulation.

Observers: Six naïve participants took part in the experiment; all
observers had normal or corrected-to-normal visual acuity, and
normal color vision. All observers gave written informed consent
in agreement with the local ethics committee and in accordance
with the Code of Ethics of the World Medical Association (Declara-
tion of Helsinki) for experiments involving humans.

Perceptual Task: Each observer sat in front of a computer screen
and was presented with the 576 rendered scenes. The scenes had a
resolution of 1000 � 1000 pixels and observers set at approxi-
mately 62 cm from the centre of the computer monitor. Conse-
quently, the visual scenes subtended 26 � 26 degrees of visual
angle. The task requirement for the observers was to ‘‘pick the
object which is painted with the lighter gray paint”. In each scene
the four objects were presented on a virtual marble table (Fig. 3).
Observers indicated their choice with the computer mouse by left
clicking on the chosen object. The selected object disappeared,
leaving three objects in the scene. Again the observer had to pick
the object that was painted lighter, this until one single object
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was left in the scene. Each of the 576 scenes was shown once to
every participant. The scenes where presented to each observer
in random order.

Analysis: First, we wanted to determine whether the presence of
specular highlights affects the accuracy and precision of lightness
judgments. Namely, we investigated whether glossy surfaces with
the same diffuse component as matte surfaces appear to have the
same lightness; or whether the specular component introduces a
bias in lightness perception. Additionally, we tested whether the
presence of a specular component makes the lightness judgment
less precise. Similar to the approach we applied to determine the
relative diagnosticity of luminance percentiles with regard to
physical albedo, we used linear classification to determine how
well each percentile predicts perceived lightness. Observers ranked
the four objects in every scene according to their lightness. As a
first step we used each individual percentile to classify the ranking
of the glossy and matte surfaces separately. We trained the classi-
fier on the whole set of images, leaving out one image at a time.

Ranking positions results: We tested the effect of Specularity on
lightness rankings with repeated measures ANOVAs on the obser-
vers’ average ranks. A 2-way repeated measures ANOVA with Spec-
ularity and Amplitude as fixed factors revealed a main effect of
Specularity (F(1,6) = 8.084, p < 0.05), no effect of Amplitude (F
(3,18) = 0.71, p = 0.558), and no interaction (F(3,18) = 1.719,
p = 0.199). A second 2-way repeated measures ANOVA with Spec-
ularity and Spatial Frequency as fixed factors revealed a main effect
of Specularity (F(1,6) = 8.084, p < 0.05), no effect of Spatial Fre-
quency (F(3,18) = 2.96, p = 0.06), and no interaction (F(3,18)
= 2.701, p = 0.076). This results show that glossy surfaces are
ranked as darker than matte ones (Fig. 7, A&B).

Ranking precision results: Specular reflection does not depend on
the diffuse reflectance component of the surfaces. Therefore, it is
not informative about the surface albedo, and specular highlights
could be interpreted as luminance noise added to the diffuse com-
ponent. Since the specular highlights tend to be visible in the prox-
imity of the parts of the surface that receive a more direct
illumination (Fleming et al., 2004; Koenderink & van Doorn,
1980); and given that those parts who receive a more direct illumi-
nation are the most informative about the surface albedo (Toscani
et al., 2013, 2015), it is plausible that lightness perception is less
precise for glossy than for matte surfaces. To test this hypothesis,
we used the ranking data to measure the precision of lightness per-
ception. In every scene, there were two glossy and two matte sur-
faces; one rendered with a higher albedo than the other object in
each pair. For every pair, each object was ranked consistently or
Fig. 7. Ranking results for glossy and matte surfaces. A) Average rankings (y-axis) as
points represent matte surfaces; gray data points represent glossy surfaces. Error bars re
stimulus Amplitude (x-axis) for glossy and matte surfaces. Black data points represen
standard errors of the mean. Glossy objects were consistently rated as being darker tha
inconsistently with the rendered albedo. For every comparison
between the two matte and two glossy surfaces, we computed
the probability of the higher albedo surface to be ranked as lighter
than the other as a function of the albedo difference between the
two surfaces. We considered the steepness of this function as a
measure of the precision of the observers. We fitted cumulative
Gaussians to the comparison data (example for one observer in
Fig. 8A), separately for glossy and matte surfaces. For every obser-
ver, we computed Precision as the inverse of the standard devia-
tion of the Gaussians, since the steepness of the cumulative
Gaussian function inversely depends on its standard deviation
(Fig. 8B).

A repeated measures t-test revealed a significant difference in
Precision between the rankings of Matte and Gossy surfaces (t(6)
= 5.61, p < 0.005). These experimental results suggest that the
visual system is affected by the noise added by the specular com-
ponent, while judging the lightness of three-dimensional surfaces.

Results for ranking classification: We repeated the classification
analysis described before with the difference that binary compar-
isons were performed on the rankings produced by the observers,
instead of on the diffuse reflectance values used to render the
scenes. For every scene, the perceived lightness ranking of an
object was compared with the lightness ranking of the other with
the same Specularity (glossy or matte). These binary comparisons
were classified with a binary linear classifier. Classification was
done for each individual percentile, separately for glossy and matte
surfaces, irrespective of the shape factors (i.e. Frequency and
Amplitude). We decided to pool the shape factors together because
considering them individually led to noisy and difficult to interpret
results. We trained the classifier on the whole set of images, leav-
ing out one image at a time. Fig. 9 represents the classification per-
formance of every percentile of the surfaces’ luminance
distribution for matte and glossy objects. High performance of
the classifier for a specific histogram band indicates that the lumi-
nance within that band is highly associated to perceptual
judgments.

For matte surfaces, the performance of the classifier tends to
increase with the percentiles, with the peak performance for the
brightest parts of the images. In contrast, for the glossy surfaces,
performance peaks at the darkest parts of the luminance distribu-
tions of the objects, and starts to decrease approximately after the
70th percentile. This performance profile qualitatively resembles
the one found for the surface albedo: in matte images, the highest
parts of the luminance distributions are associated with high per-
formance, whereas in the glossy images, the lowest parts are more
a function of stimulus Frequency (x-axis) for glossy and matte surfaces. Black data
present the standard error of the mean. B) Average rankings (y-axis) as a function of
t matte surfaces; gray data points represent glossy surfaces. Error bars represent
n matte objects.



Fig. 8. Precision for glossy and matte surfaces. A) Probability of being ranked as lighter as a function of albedo difference. Example data from observer EK. Cumulative
Gaussian functions are fitted separately for glossy and matte surfaces. B) Precision for Matte (y-axis) and Glossy (x-axis) surfaces. Precision is computed as the inverse of the
standard deviations of the fitted Gaussian curves. Circles represent the different observers. The circle filled with a cross represents observer EK, whose individual data is
shown in A).

Fig. 9. Classification results for observers’ rankings of the ‘‘blobby shapes”.
Performance is represented on the y-axis for each percentile (represented on the x-
axis). The dashed lines represent the classification performance for matte (dark
gray) and glossy (light gray) surfaces. The shaded areas represent their standard
errors.
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informative about the surface albedo. This result suggests that
observers exploit two different strategies in judging the albedo of
matte or glossy surfaces. Namely, for matte surfaces, observers
mostly consider the brightest parts of the surfaces’ luminance dis-
tributions (which are the most informative about their albedos).
For glossy surfaces (where the brightest parts tend to correspond
to the specular highlights), people tend to base their judgments
on lower parts of the luminance distributions.

Results from the classification of human judgments resemble
the ones from the classification of surface rendering albedo; how-
ever, due to the correlational nature of the experiment, this resem-
blance could just be explained by the fact that people could do the
task with over-chance performance. In order to test this possibility
we designed an experiment where we manipulated different parts
of the luminance distributions to study how they affect lightness
perception.
Fig. 10. Visual display used for the luminance bands manipulation experiment.
5. Luminance bands manipulation

In this experiment we selectively manipulated different parts of
the luminance histogram of a virtual shape to determine their
impact on perceived lightness, for glossy and matte surfaces sepa-
rately. The previous image analyses showed that the optimal solu-
tion is to base lightness judgments of matte surfaces on the
brightest parts of their luminance distributions; whereas for glossy
surfaces, people should base their judgments on relatively lower
luminance distribution bands.
5.1. Methods

Observers: Ten naive observers took part in the experiment. All
observers had normal or corrected-to-normal visual acuity. All
observers provided written informed consent, in agreement with
the local ethics committee, and in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki)
for experiments involving humans.

Stimuli: We selected one of the ‘‘blobby” shapes with central
parameters (Frequency = 5 cycles, Amplitude = 6%) and rendered
it with three different random rotations on its vertical axis. The
random rotations were balanced across trials. The shape was
placed in the same virtual scene used for the ranking experiment
(Fig. 10), in the horizontal line closer to the observer, and on the
right or left of a sphere. The side position (left or right of the
sphere) was balanced across trials. The size of the stimuli was sim-
ilar to the one in the previous experiment.

Renderings: We again rendered our scenes using RADIANCE
software (Ward, 1994) through the MATLAB-based RenderTool-
box3 (Lichtman et al., 2007). The ‘‘blobby” shapes were rendered
in the same manner as the ranking experiment. The matte surfaces
were rendered according to a Lambertian reflection model,
whereas the glossy surfaces were rendered according to a Ward
model (Ward, 1992). The diffuse component was set to 0.4. The
specular reflections for the glossy surfaces were defined by the
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specular component (set to 0.2), and roughness (set to 0.1). We
used ‘‘The Uffizi Gallery” light probe as the virtual illuminant for
all scenes. The sphere was always totally matte, and was rendered
with diffuse component set to 1 (100% reflectance). We then pro-
duced images of the sphere (with all other desired diffuse compo-
nents) by simply multiplying the sphere image for the desired
value (comprising values between 0 and 1). This is possible
because the sphere is totally matte and convex; therefore, the
effect of diffuse reflectance on the reflected light from every point
of the surface is linear and there are very few inter-reflections (lim-
ited to the areas of the surface facing the table) to potentially intro-
duce nonlinearities.

Bands manipulation: In order to manipulate different parts of the
luminance histogram of the ‘‘blobby” shapes, we extracted the
luminance distribution with a zero reflectance mask (as we did
with the other shapes). We then divided it into ten bands according
to its deciles, i.e. the first band included all the pixels with a lumi-
nance between the minimum value of the luminance distribution
and the 10th percentile. In one condition (Increment), the lumi-
nance of each band was increased until the mean luminance of
the whole distribution was 5% higher; and in another condition
(Decrement), it was decreased until the mean luminance of the
whole distribution was 5% lower (Fig. 11). The manipulation of
the luminance histogram was small enough to avoid causing the
stimuli to appear clearly unrealistic and/or to appear of non-
uniform albedo, yet it was large enough to affect lightness percep-
tion. We interviewed our participants at the end of the experiment
and nobody noticed anything unrealistic in the luminance profile
of our ‘‘blobby” shapes. The luminance manipulation was applied
to the 1st, 4th, 7th, and 10th bands. These bands were relatively
distant between each other in terms of luminance as compared
to the small magnitude of our manipulation. Because of this, only
5.3% of the pixels moved from one band to one of the others that
we manipulated; therefore, we are confident that the conclusions
we draw from the manipulation of a given histogram portion actu-
ally apply to that portion (e.g. when we manipulated the 4th band
we could be reasonably confident in drawing conclusions about the
middle luminances of our shape). We also obtained baseline light-
ness matches for the unmodified shapes.

Perceptual Task: Observers had to state whether the sphere or
the ‘‘blobby” shape was higher in lightness. After every response,
the luminance of the sphere was varied following an adaptive
staircase method (QUEST; Watson & Pelli, 1983). Separate stair-
cases (and thus Points of Subjective Equality – PSE) were obtained
for each manipulated band, for the two conditions, and for the
shape in the non-modified version. In order to test observer relia-
bility, we measured two separate PSE values for the non-modified
version of the shape. Each staircase terminated after 50 judgments.

5.2. Results

Fig. 12 represents the PSEs for the various bands and for the
baseline, in the conditions where the luminance was increased
and where it was decreased, for the matte and for the glossy
objects (Panel A and B, respectively). The baseline PSEs for matte
surfaces are clearly higher than for glossy surfaces, in line with
the previous observation that glossy surfaces appear darker than
matte surfaces. Qualitatively, for the matte surfaces, the PSEs in
the condition where luminance was increased are higher than
the PSEs in the condition where the luminance was decreased,
though for the third band the average PSEs for the two conditions
are very similar. For the glossy surfaces, the PSEs seem different
between the two conditions of the luminance increment or decre-
ment, but this difference is highly reduced for the brightest band of
the luminance histogram, where the PSEs are basically identical on
average.
We first used Bonferroni corrected t-tests to compare the PSEs
in the two conditions of luminance increment or decrement for
each band. For the matte object, only the manipulation of the
brightest band of the luminance histogram caused a significant dif-
ference in the PSEs between the two conditions (ts(9) = 2.5, 3.44,
0.29 and 6.42; p-values = 0.27, 0.06, 1, 0.001; for the first, second,
third and fourth band respectively), whereas only the manipula-
tion of the third band of the glossy object caused a significant dif-
ference (ts(9) = 2.73, 2.58, 4.72 and �0.65; p-values = 0.185, 0.238,
0.009, 1; for the first, second, third and fourth band respectively).
Manipulating the highest luminance band of the glossy objects
barely affected the PSE. In a further analysis, we performed for each
band a 2-way repeated measures ANOVA; for the first, second,
third and fourth band respectively, with direction of manipulation
(luminance Increment vs Decrement) and Specularity (matte vs
glossy) as factors. The ANOVAs revealed significant interactions
for the last two bands (Fs(1,9) = 0.4651, 0.0844, 11.3803 and
10.4909; p-values = 0.512, 0.778, 0.008 and 0.01; for the first, sec-
ond, third and fourth band respectively), indicating that the manip-
ulation affected the glossy object more than the matte one when
applied to the third band (60th–70th percentile of the luminance
distribution), and the matte surface more than the glossy when
applied to the fourth band (90th–100th percentile of the lumi-
nance distribution). These results are in accordance with the per-
formance results of the ranking experiment, showing that the
most diagnostic percentiles are between the 60th and the 70th per-
centile for glossy surfaces, whereas the highest percentiles are the
most diagnostic for matte surfaces.
6. General discussion

We used extensive physically based lighting simulations to
investigate how the different percentiles of the luminance his-
togram of matte and glossy objects are diagnostic of their surface
albedo. Results for glossy and matte surfaces were qualitatively
different: the brightest parts were the best predictor of the albedo
of the matte surfaces, whereas they poorly predicted the diffuse
reflectance component of glossy surfaces. These results demon-
strate that relying on the brightest parts of a surface as an estimate
of its lightness is a viable strategy only for matte objects, whereas
it would be misleading for glossy objects. In two perceptual exper-
iments we tested whether observers judge lightness of glossy and
matte surfaces differently. Glossy surfaces appeared darker than
matte ones (see Figs. 8 and 12), and observers were less precise
in judging their lightness. This result is consistent with the idea
that human observers ignore the specular reflection component
when judging lightness of glossy surfaces. We also used the per-
centiles of the luminance distributions of the objects to predict
observers’ judgments. Classification results showed that the high-
est percentiles highly correlated with human judgments of matte
surfaces and poorly correlated with judgments of glossy surface.
The percentiles within the darker half of an object‘s luminance dis-
tribution where the best predictors of the lightness rankings in the
case of glossy surfaces. In order to test whether this association
reveals a different reliance of the observer on surface areas of dif-
ferent brightness, we independently manipulated different sectors
of the virtual objects’ luminance distribution. Changes in the
brightest parts prominently affected the lightness judgments in
the case of matte objects, whereas they had no impact on the light-
ness of glossy objects.
6.1. Simulation

In our first lighting simulation, we used a large set of three-
dimensional models under different illuminations to study which



Fig. 11. Luminance bands manipulation. Only the bands used in the experiment are shown (1st, 4th, 7th and 10th bands). The top row represents in red the pixels of the
shape that belong to a certain histogram band, from the 1st to the 10th, from left to right. The second row represents the experimental stimuli for the manipulation where the
luminance was increased, and the third row represents the stimuli for the manipulation where the luminance was decreased. A) & B) panels describe the manipulation for the
matte and the glossy shapes, respectively.
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parts of the luminance distributions of the rendered surfaces are
particularly informative about the surfaces’ albedo. The brightest
parts of the luminance distributions of matte surfaces performed
best in classifying their diffuse component. This result is analogous
to what we previously found with a more limited set of shapes and
under one single illumination (Toscani et al., 2013, 2015). On the
other hand, the brightest parts of the luminance distributions of
the glossy objects performed relatively poorly. One aspect that
almost all models of reflection share (Fleming, 2014) is the distinc-
tion between a diffuse and specular reflection components; the
first one scattered in all directions, and the second one in a single
direction according to the law of Hero (e.g. Barrow & Tenenbaum,
1978; Giesel & Gegenfurtner, 2010; Klinker, Shafer, & Kanade,
1990; Shafer, 1984).The model we used for our simulation imple-
ments the two components separately, and we classified the ren-
dered objects according to their diffuse component. Since
specular highlights tend to be much brighter than diffusely
reflected light, because the reflection is more focused (Thompson
et al., 2011) they affect the highest percentile of the luminance dis-
tributions of the glossy surfaces, without being informative about
its diffuse reflection component. Thus the specular highlights can
be considered luminance noise added to the information about
the surface diffuse component. In a perfectly matte surface, the
brightest parts of the luminance distribution are the most informa-
tive about reflectance. Whether the noise added by the specular
reflection is enough to make those parts poorly informative about
the diffuse reflection component relative to the rest of the distribu-
tion is an empirical question. Our results show that specular reflec-
tion actually makes the brightest part of the luminance
distributions of glossy surfaces poor predictors of their diffuse
reflection components.

6.2. Glossy shapes appear darker

Ranking results (and also the results of the band manipulation
experiment, as it is shown by the PSEs for the baselines) show that



Fig. 12. PSE for the manipulated matte and glossy objects, in the different bands of the luminance histograms. The y-axis represents the PSEs obtained by the QUEST
algorithm. The x-axis represents the band of the luminance histogram affected by the luminance increment (light gray lines and upward triangles) or decrement (dark gray
and downward triangles). The horizontal straight lines represent the PSEs for the baseline condition, where the luminance of the image was not changed-the baselines were
measured with two staircases. Colors representing the baselines are arbitrary. Stars indicate significant PSE differences between the luminance increment and decrement
conditions. A and B panels represent the PSEs for the matte and glossy objects, respectively.
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glossy objects tend to appear darker than matte objects. This find-
ing is compatible with the idea that lightness is computed by the
visual system from the luminance distribution of glossy surfaces
(excluding the light coming from the specular highlights). One pos-
sible reason for this is that specular highlights tend to appear in the
proximity of the maxima of the diffuse component (Fleming et al.,
2004; Koenderink & van Doorn, 1980), effectively masking them
for the purpose of recovering diffuse reflectance. Another reason
might lie in the physics of reflection. It is indeed difficult to equate
the physical diffuse reflectance of a matte and glossy surface. The
difficulty arises because the incident light reflected by the specular
component cannot also be reflected by the diffuse component and
vice versa. In our rendering we defined the specular and the diffuse
components according to the Ward model (Ward, 1992), where
diffuse reflections are proportional to a component of incident illu-
mination that discounts the illumination lost through specular
reflection. According to this definition, glossy surfaces physically
reflect less light towards the observer compared to matte surfaces
with the same diffuse reflection component. We have reasons to
believe that this difference in reflected light is in principle large
enough to explain our finding that glossy surfaces are perceived
as darker than matte surfaces. As a first step we estimated the dif-
ference in perceived albedo between glossy and matte surfaces
from the luminance bands manipulation experiment. We did this
by subtracting the PSE of the non-manipulated glossy surfaces
(40% – see baselines in Fig. 12) from the PSE of the non-
manipulated matte surfaces (46%). The perceptual effect in our
data was thus a 6% reduction diffuse reflectance. As a second step
we computed the difference image between the glossy and the
matte image for each of the renderings used in the luminance
bands manipulation experiment. We divided the luminance his-
tograms of these difference images in fifty bands and selected
the band where the negative difference was larger. As a third step
we rendered, for each of the original shapes, 50 equivalent matte
shapes with a lower diffuse component (according to the Ward
model), and subtracted from them the corresponding original
matte shape rendered with the original albedo. We then selected
the diffuse reflectance level for which the average luminance in
the pixels corresponding to the sub-band selected at step 2 was
the closest to the one of the glossy image. This procedure gave
us a measure of how darker in albedo a matte surface needs to
be in order to match the maximum luminance decrease introduced
by gloss. This estimate is again 6%, approximately the same as the
difference in appearance we observed in the luminance band
manipulation experiment. Of course it is unlikely that observers
perfectly isolate the band which shows the largest luminance
reduction, so we cannot exclude that perceptual factors also play
a role. For instance, black glossy surfaces appear shinier than white
glossy surfaces despite having identical specular reflectance
(Billmeyer & O’Donnel, 1987). This effect might be mediated by a
contrast effect, whereby the specular highlights appear brighter
being surrounded by an overall darker shape. Similarly, the overall
surface of an object might be perceived to be darker when the
bright highlights are added. We do not have enough evidence at
the moment to tell apart these possibilities and we hope that
future studies will shine some light on this issue.
6.3. Specular highlights are discounted

We confirmed the idea that the brightest parts of the luminance
distributions of glossy surfaces have a poor impact on lightness
perception with an experiment where we manipulated different
parts of the luminance histograms of matte and glossy surfaces.
A luminance increment or decrement of the highest luminance
parts clearly affected lightness perception of matte surfaces, but
had no effect on glossy objects, suggesting again that specular
highlights are discounted in lightness perception. This idea is con-
sistent with results of Beck (1964). He measured perceived light-
ness of matte and glossy flat isolated real surfaces. The glossy
surfaces presented a vertically elongated visible specular highlight.
When the means of the matte and the glossy surfaces were equal-
ized, the glossy surfaces appeared darker, but when all surfaces
except the region where the highlight was visible were equalized
in luminance, there was no longer a difference in lightness percep-
tion. These results are also consistent with the idea that the visual
system computes lightness from the luminance distributions of
glossy surfaces after excluding the light coming from the specular
highlights. The fact that the visual system excludes specular reflec-
tion from the computations used to perceive lightness is not trivial,
since in many studies it has been shown that lightness perception
is affected by brightness variations on the surface (Ripamonti et al.,
2004; Robilotto & Zaidi, 2004; Toscani et al., 2015; Zdravković,
2008).
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6.4. Lightness predictors

In our study, we aimed to predict lightness judgments with the
percentiles of the luminance distributions of our ‘‘blobby” shapes.
Since our shapes were uniform in paint, with no texture, the lumi-
nance variations across their surfaces tended to be smooth and the
different percentiles basically represented different areas on the
surface. This means that our predictors were directly accessible
to the visual system as the luminance at some location in the input
image. In contrast, other works proposed that the visual system
estimates the surface albedo through other image statistics which
do not necessarily represent a luminance value on the surface (for
instance, the skewness of the luminance distribution Motoyoshi
et al., 2007; Sharan et al., 2008). The skewness of the luminance
histogram of our ‘‘blobby” shapes could predict observers’ judg-
ments in the ranking experiment better than at chance level (59%
of correct classification for both matte and glossy objects tested
separately). A logistic regression revealed a negative correlation
between lightness rankings and skewness (mean b = �0.3114 for
matte images and mean b = �1.7301), which reached statistical
significance in a between-subjects t-test only for the glossy sur-
faces (t6 = �8.1557, p < 0.001). Glossy surfaces tend to have posi-
tively skewed intensity histograms because only small regions
are very bright due to specular highlights (Thompson et al.,
2011). The strategy of excluding the specular reflection from the
lightness computation could explain the negative correlation
between skewness and perceived lightness in the glossy surfaces.
It is to notice that complex factors also have an effect on lightness
perception, such as object shape (Knill & Kersten, 1991; Koffka,
1935), scene geometry (e.g. Gilchrist, 1980; Radonjić, Todorović,
& Gilchrist, 2010), interpretation of transparent surfaces and junc-
tions (e.g. Adelson, 1993, 2000; Anderson, 1997, 2003; Anderson &
Winawer, 2005, 2008; Metelli, 1970, 1974a, 1974b). These effects
require interpretation of the scene and are not explained by simple
lateral inhibition between retinal neurons, which filters out shal-
low intensity gradients, owing mostly to illumination effects. More
generally, perceived surface reflectance properties depend on sev-
eral cues about the surface geometry, such as its two-dimensional
profile, texture and motion (Marlow & Anderson, 2016; Marlow,
Todorović, & Anderson, 2015) and some of these spatial aspects
which cannot be represented in a luminance histogram, are crucial
for the perception of reflectance properties of a surface (Anderson
& Kim, 2009; Kim, Marlow, & Anderson, 2011). These spatial fac-
tors are neglected in the present work, where we focused on the
histogram bands of the luminance distributions of our matte and
glossy virtual surfaces.

While we suggest that specular highlights are discounted for
the purpose of lightness estimation, a theory of how specular high-
lights are identified is beyond the scope of the present work. How-
ever, specular highlights tend share the same orientation as the
diffuse shading that surrounds them (Anderson & Kim, 2009;
Beck & Prazdny, 1981; Todd, Norman, & Mingolla, 2004) and they
tend to appear in regions near (but not coincident) the luminance
maxima in diffuse shading (Fleming et al., 2004; Koenderink & van
Doorn, 1980). These constraints can be used to discriminate spec-
ular reflections which tend to appear as matte when these con-
straints are violated (Beck & Prazdny, 1981; Kim et al., 2011;
Marlow, Kim, & Anderson, 2011). These cues are likely to be used
also to detect specular highlights in our scenes. It is worth to men-
tion that in dynamic scenes the visual system could detect specular
highlight by exploring their motion characteristics (Doerschner,
Kersten, & Schrater, 2011) or their position in depth (Blake &
Bülthoff, 1990). Concerning our results, it is yet to be investigated
whether observers discount specular reflections in a similar fash-
ion at different levels of glossiness. For instance, it is hard to tell
whether observers would behave the same way when specularity
is barely visible as they did when confronted with our stimuli
(which clearly express specular highlights). Additionally, it is to
notice that we rendered specular highlights according to the Ward
model simulating the appearance of plastic. In other materials such
as metal or glass, specular reflection is characterized by different
physical properties which might lead to different perceptual
strategies.
7. Conclusions

The present results overall extend our previous finding that
human observers apply the optimal strategy in detecting the
reflectance of matte surfaces. They rely mostly on the brightest
parts of the object’s surface, which are also the most informative.
Here we show that observers discard the highlights (which are less
informative), and rely on relatively darker segments of the lumi-
nance distribution (which are more informative about reflectance)
when confronted with glossy objects. While this strategy is opti-
mal for the purpose of discriminating between the relative light-
ness of glossy objects, it comes at a cost. The observers’ inability
to interpolate the luminance profile masked by the highlights
impairs lightness constancy, whereby glossy surfaces appear dar-
ker than matte ones. This might be a general sign that humans
are more adapted or trained to compare the visual quality of mate-
rials belonging to the same class, whereas being able to make abso-
lute comparisons between materials belonging to different classes
is a less relevant ability.
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